精通
英语
和
开源
,
擅长
开发
与
培训
,
胸怀四海
第一信赖
(base)  server@server-PowerEdge-R740:~/kaldi-trunk/egs/wsj/s5$ ./run.sh
                state 4*************
                stage 5***************
                stage 6****************
                ****************7 run_mmi_tri4b  4b****************
                ****************8  run_nnet2****************
                local/nnet3/run_ivector_common.sh:  preparing directory for low-resolution speed-perturbed data (for alignment)
                utils/data/perturb_data_dir_speed_3way.sh:  making sure the utt2dur and the reco2dur files are present
                ... in data/train_si284, because  obtaining it after speed-perturbing
                ... would be very slow, and you might  need them.
                utils/data/get_utt2dur.sh:  data/train_si284/utt2dur already exists with the expected length.  We won't recompute it.
                utils/data/get_reco2dur.sh:  data/train_si284/reco2dur already exists with the expected length.  We won't recompute it.
                utils/data/perturb_data_dir_speed.sh: generated  speed-perturbed version of data in data/train_si284, in  data/train_si284_sp_speed0.9
                utils/validate_data_dir.sh: Successfully  validated data-directory data/train_si284_sp_speed0.9
                utils/data/perturb_data_dir_speed.sh:  generated speed-perturbed version of data in data/train_si284, in  data/train_si284_sp_speed1.1
                utils/validate_data_dir.sh: Successfully  validated data-directory data/train_si284_sp_speed1.1
                utils/data/combine_data.sh  data/train_si284_sp data/train_si284 data/train_si284_sp_speed0.9 data/train_si284_sp_speed1.1
                utils/data/combine_data.sh: combined  utt2uniq
                utils/data/combine_data.sh [info]: not  combining segments as it does not exist
                utils/data/combine_data.sh: combined  utt2spk
                utils/data/combine_data.sh [info]: not  combining utt2lang as it does not exist
                utils/data/combine_data.sh: combined  utt2dur
                utils/data/combine_data.sh [info]: **not  combining utt2num_frames as it does not exist everywhere**
                utils/data/combine_data.sh: combined  reco2dur
                utils/data/combine_data.sh [info]: **not  combining feats.scp as it does not exist everywhere**
                utils/data/combine_data.sh: combined text
                utils/data/combine_data.sh [info]: **not  combining cmvn.scp as it does not exist everywhere**
                utils/data/combine_data.sh [info]: not  combining vad.scp as it does not exist
                utils/data/combine_data.sh [info]: not  combining reco2file_and_channel as it does not exist
                utils/data/combine_data.sh: combined  wav.scp
                utils/data/combine_data.sh [info]: not  combining spk2gender as it does not exist
                fix_data_dir.sh: kept all 18912  utterances.
                fix_data_dir.sh: old files are kept in  data/train_si284_sp/.backup
                utils/data/perturb_data_dir_speed_3way.sh:  generated 3-way speed-perturbed version of data in data/train_si284, in  data/train_si284_sp
                utils/validate_data_dir.sh: Successfully validated  data-directory data/train_si284_sp
                local/nnet3/run_ivector_common.sh: making  MFCC features for low-resolution speed-perturbed data (needed for alignments)
                steps/make_mfcc.sh --nj 30 --cmd run.pl  data/train_si284_sp
                utils/validate_data_dir.sh: Successfully  validated data-directory data/train_si284_sp
                steps/make_mfcc.sh: [info]: no segments  file exists: assuming wav.scp indexed by utterance.
                steps/make_mfcc.sh: Succeeded creating  MFCC features for train_si284_sp
                steps/compute_cmvn_stats.sh data/train_si284_sp
                Succeeded creating CMVN stats for  train_si284_sp
                local/nnet3/run_ivector_common.sh: fixing  input data-dir to remove nonexistent features, in case some 
                .. speed-perturbed segments were too  short.
                fix_data_dir.sh: kept all 18912  utterances.
                fix_data_dir.sh: old files are kept in  data/train_si284_sp/.backup
                local/nnet3/run_ivector_common.sh:  aligning with the perturbed low-resolution data
                steps/align_fmllr.sh --nj 30 --cmd run.pl  data/train_si284_sp data/lang exp/tri4b exp/tri4b_ali_train_si284_sp
                steps/align_fmllr.sh: feature type is lda
                steps/align_fmllr.sh: compiling training  graphs
                steps/align_fmllr.sh: aligning data in  data/train_si284_sp using exp/tri4b/final.alimdl and speaker-independent  features.
                steps/align_fmllr.sh: computing fMLLR  transforms
                steps/align_fmllr.sh: doing final  alignment.
                steps/align_fmllr.sh: done aligning data.
                steps/diagnostic/analyze_alignments.sh  --cmd run.pl data/lang exp/tri4b_ali_train_si284_sp
                steps/diagnostic/analyze_alignments.sh:  see stats in exp/tri4b_ali_train_si284_sp/log/analyze_alignments.log
                525 warnings in  exp/tri4b_ali_train_si284_sp/log/align_pass1.*.log
                201 warnings in  exp/tri4b_ali_train_si284_sp/log/fmllr.*.log
                528 warnings in  exp/tri4b_ali_train_si284_sp/log/align_pass2.*.log
                local/nnet3/run_ivector_common.sh:  creating high-resolution MFCC features
                utils/copy_data_dir.sh: copied data from  data/train_si284_sp to data/train_si284_sp_hires
                utils/validate_data_dir.sh: Successfully  validated data-directory data/train_si284_sp_hires
                utils/copy_data_dir.sh: copied data from  data/test_dev93 to data/test_dev93_hires
                utils/validate_data_dir.sh: Successfully  validated data-directory data/test_dev93_hires
                utils/copy_data_dir.sh: copied data from  data/test_eval92 to data/test_eval92_hires
                utils/validate_data_dir.sh: Successfully  validated data-directory data/test_eval92_hires
                utils/data/perturb_data_dir_volume.sh:  data/train_si284_sp_hires/feats.scp exists; moving it to  data/train_si284_sp_hires/.backup/ as it wouldn't be valid any more.
                utils/data/perturb_data_dir_volume.sh:  added volume perturbation to the data in data/train_si284_sp_hires
                steps/make_mfcc.sh --nj 30 --mfcc-config  conf/mfcc_hires.conf --cmd run.pl data/train_si284_sp_hires
                utils/validate_data_dir.sh: Successfully  validated data-directory data/train_si284_sp_hires
                steps/make_mfcc.sh: [info]: no segments  file exists: assuming wav.scp indexed by utterance.
                steps/make_mfcc.sh: Succeeded creating  MFCC features for train_si284_sp_hires
                steps/compute_cmvn_stats.sh  data/train_si284_sp_hires
                Succeeded creating CMVN stats for  train_si284_sp_hires
                fix_data_dir.sh: kept all 18912  utterances.
                fix_data_dir.sh: old files are kept in  data/train_si284_sp_hires/.backup
                steps/make_mfcc.sh --nj 30 --mfcc-config  conf/mfcc_hires.conf --cmd run.pl data/test_dev93_hires
                steps/make_mfcc.sh: moving  data/test_dev93_hires/feats.scp to data/test_dev93_hires/.backup
                utils/validate_data_dir.sh: Successfully  validated data-directory data/test_dev93_hires
                steps/make_mfcc.sh: [info]: no segments  file exists: assuming wav.scp indexed by utterance.
                steps/make_mfcc.sh: Succeeded creating  MFCC features for test_dev93_hires
                steps/compute_cmvn_stats.sh  data/test_dev93_hires
                Succeeded creating CMVN stats for  test_dev93_hires
                fix_data_dir.sh: kept all 6304  utterances.
                fix_data_dir.sh: old files are kept in  data/test_dev93_hires/.backup
                steps/make_mfcc.sh --nj 30 --mfcc-config  conf/mfcc_hires.conf --cmd run.pl data/test_eval92_hires
                steps/make_mfcc.sh: moving  data/test_eval92_hires/feats.scp to data/test_eval92_hires/.backup
                utils/validate_data_dir.sh: Successfully  validated data-directory data/test_eval92_hires
                steps/make_mfcc.sh: [info]: no segments  file exists: assuming wav.scp indexed by utterance.
                steps/make_mfcc.sh: Succeeded creating  MFCC features for test_eval92_hires
                steps/compute_cmvn_stats.sh  data/test_eval92_hires
                Succeeded creating CMVN stats for  test_eval92_hires
                fix_data_dir.sh: kept all 6304  utterances.
                fix_data_dir.sh: old files are kept in  data/test_eval92_hires/.backup
                local/nnet3/run_ivector_common.sh:  computing a subset of data to train the diagonal UBM.
                utils/data/subset_data_dir.sh: reducing  #utt from 18912 to 4728
                local/nnet3/run_ivector_common.sh:  computing a PCA transform from the hires data.
                steps/online/nnet2/get_pca_transform.sh  --cmd run.pl --splice-opts --left-context=3 --right-context=3 --max-utts 10000  --subsample 2 exp/nnet3/diag_ubm/train_si284_sp_hires_subset  exp/nnet3/pca_transform
                Done estimating PCA transform in  exp/nnet3/pca_transform
                local/nnet3/run_ivector_common.sh:  training the diagonal UBM.
                steps/online/nnet2/train_diag_ubm.sh  --cmd run.pl --nj 30 --num-frames 700000 --num-threads 32  exp/nnet3/diag_ubm/train_si284_sp_hires_subset 512 exp/nnet3/pca_transform  exp/nnet3/diag_ubm
                steps/online/nnet2/train_diag_ubm.sh:  Directory exp/nnet3/diag_ubm already exists. Backing up diagonal UBM in  exp/nnet3/diag_ubm/backup.i1B
                steps/online/nnet2/train_diag_ubm.sh:  initializing model from E-M in memory, 
                steps/online/nnet2/train_diag_ubm.sh:  starting from 256 Gaussians, reaching 512;
                steps/online/nnet2/train_diag_ubm.sh: for  20 iterations, using at most 700000 frames of data
                Getting Gaussian-selection info
                steps/online/nnet2/train_diag_ubm.sh:  will train for 4 iterations, in parallel over
                steps/online/nnet2/train_diag_ubm.sh: 30  machines, parallelized with 'run.pl'
                steps/online/nnet2/train_diag_ubm.sh:  Training pass 0
                steps/online/nnet2/train_diag_ubm.sh:  Training pass 1
                steps/online/nnet2/train_diag_ubm.sh:  Training pass 2
                steps/online/nnet2/train_diag_ubm.sh:  Training pass 3
                local/nnet3/run_ivector_common.sh:  training the iVector extractor
                steps/online/nnet2/train_ivector_extractor.sh  --cmd run.pl --online-cmvn-iextractor false --nj 10 --num-threads 4  --num-processes 4 data/train_si284_sp_hires exp/nnet3/diag_ubm  exp/nnet3/extractor
                steps/online/nnet2/train_ivector_extractor.sh:  Directory exp/nnet3/extractor already exists. Backing up iVector extractor in  exp/nnet3/extractor/backup.Sd1
                steps/online/nnet2/train_ivector_extractor.sh:  doing Gaussian selection and posterior computation
                Accumulating stats (pass 0)
                Summing accs (pass 0)
                Updating model (pass 0)
                Accumulating stats (pass 1)
                Summing accs (pass 1)
                Updating model (pass 1)
                Accumulating stats (pass 2)
                Summing accs (pass 2)
                Updating model (pass 2)
                Accumulating stats (pass 3)
                Summing accs (pass 3)
                Updating model (pass 3)
                Accumulating stats (pass 4)
                Summing accs (pass 4)
                Updating model (pass 4)
                Accumulating stats (pass 5)
                Summing accs (pass 5)
                Updating model (pass 5)
                Accumulating stats (pass 6)
                Summing accs (pass 6)
                Updating model (pass 6)
                Accumulating stats (pass 7)
                Summing accs (pass 7)
                Updating model (pass 7)
                Accumulating stats (pass 8)
                Summing accs (pass 8)
                Updating model (pass 8)
                Accumulating stats (pass 9)
                Summing accs (pass 9)
                Updating model (pass 9)
                utils/data/modify_speaker_info.sh: copied  data from data/train_si284_sp_hires to  exp/nnet3/ivectors_train_si284_sp_hires/train_si284_sp_hires_max2, number of  speakers changed from 195 to 9495
                utils/validate_data_dir.sh: Successfully  validated data-directory  exp/nnet3/ivectors_train_si284_sp_hires/train_si284_sp_hires_max2
                steps/online/nnet2/extract_ivectors_online.sh  --cmd run.pl --nj 30  exp/nnet3/ivectors_train_si284_sp_hires/train_si284_sp_hires_max2  exp/nnet3/extractor exp/nnet3/ivectors_train_si284_sp_hires
                steps/online/nnet2/extract_ivectors_online.sh:  extracting iVectors
                steps/online/nnet2/extract_ivectors_online.sh:  combining iVectors across jobs
                steps/online/nnet2/extract_ivectors_online.sh:  done extracting (online) iVectors to exp/nnet3/ivectors_train_si284_sp_hires  using the extractor in exp/nnet3/extractor.
                steps/online/nnet2/extract_ivectors_online.sh  --cmd run.pl --nj 65 data/test_dev93_hires exp/nnet3/extractor  exp/nnet3/ivectors_test_dev93_hires
                steps/online/nnet2/extract_ivectors_online.sh:  extracting iVectors
                steps/online/nnet2/extract_ivectors_online.sh:  combining iVectors across jobs
                steps/online/nnet2/extract_ivectors_online.sh:  done extracting (online) iVectors to exp/nnet3/ivectors_test_dev93_hires using  the extractor in exp/nnet3/extractor.
                steps/online/nnet2/extract_ivectors_online.sh  --cmd run.pl --nj 65 data/test_eval92_hires exp/nnet3/extractor  exp/nnet3/ivectors_test_eval92_hires
                steps/online/nnet2/extract_ivectors_online.sh:  extracting iVectors
                steps/online/nnet2/extract_ivectors_online.sh:  combining iVectors across jobs
                steps/online/nnet2/extract_ivectors_online.sh:  done extracting (online) iVectors to exp/nnet3/ivectors_test_eval92_hires using  the extractor in exp/nnet3/extractor.
                local/nnet3/run_tdnn.sh: creating neural  net configs using the xconfig parser
                tree-info exp/tri4b/tree 
                steps/nnet3/xconfig_to_configs.py  --xconfig-file exp/nnet3/tdnn1a_sp/configs/network.xconfig --config-dir  exp/nnet3/tdnn1a_sp/configs/
                nnet3-init  exp/nnet3/tdnn1a_sp/configs//init.config exp/nnet3/tdnn1a_sp/configs//init.raw 
                LOG (nnet3-init[5.5.839~8-0c6a]:main():nnet3-init.cc:80)  Initialized raw neural net and wrote it to  exp/nnet3/tdnn1a_sp/configs//init.raw
                nnet3-info  exp/nnet3/tdnn1a_sp/configs//init.raw 
                nnet3-init  exp/nnet3/tdnn1a_sp/configs//ref.config exp/nnet3/tdnn1a_sp/configs//ref.raw 
                LOG (nnet3-init[5.5.839~8-0c6a]:main():nnet3-init.cc:80)  Initialized raw neural net and wrote it to exp/nnet3/tdnn1a_sp/configs//ref.raw
                nnet3-info  exp/nnet3/tdnn1a_sp/configs//ref.raw 
                nnet3-init  exp/nnet3/tdnn1a_sp/configs//ref.config exp/nnet3/tdnn1a_sp/configs//ref.raw 
                LOG  (nnet3-init[5.5.839~8-0c6a]:main():nnet3-init.cc:80) Initialized raw neural net  and wrote it to exp/nnet3/tdnn1a_sp/configs//ref.raw
                nnet3-info  exp/nnet3/tdnn1a_sp/configs//ref.raw 
                2021-06-23 21:35:31,719  [steps/nnet3/train_dnn.py:36 - <module> - INFO ] Starting DNN trainer  (train_dnn.py)
                steps/nnet3/train_dnn.py --stage=-10  --cmd=run.pl --mem 32G  --feat.online-ivector-dir=exp/nnet3/ivectors_train_si284_sp_hires  --feat.cmvn-opts=--norm-means=false --norm-vars=false --trainer.srand=0 --trainer.max-param-change=2.0  --trainer.num-epochs=3 --trainer.samples-per-iter=400000  --trainer.optimization.num-jobs-initial=2  --trainer.optimization.num-jobs-final=2  --trainer.optimization.initial-effective-lrate=0.0015  --trainer.optimization.final-effective-lrate=0.00015  --trainer.optimization.minibatch-size=256,128 --egs.dir=  --cleanup.remove-egs=true --use-gpu=true --feat-dir=data/train_si284_sp_hires  --ali-dir=exp/tri4b_ali_train_si284_sp --lang=data/lang --reporting.email=  --dir=exp/nnet3/tdnn1a_sp
                ['steps/nnet3/train_dnn.py',  '--stage=-10', '--cmd=run.pl --mem 32G',  '--feat.online-ivector-dir=exp/nnet3/ivectors_train_si284_sp_hires',  '--feat.cmvn-opts=--norm-means=false --norm-vars=false', '--trainer.srand=0',  '--trainer.max-param-change=2.0', '--trainer.num-epochs=3',  '--trainer.samples-per-iter=400000',  '--trainer.optimization.num-jobs-initial=2',  '--trainer.optimization.num-jobs-final=2',  '--trainer.optimization.initial-effective-lrate=0.0015',  '--trainer.optimization.final-effective-lrate=0.00015',  '--trainer.optimization.minibatch-size=256,128', '--egs.dir=',  '--cleanup.remove-egs=true', '--use-gpu=true',  '--feat-dir=data/train_si284_sp_hires',  '--ali-dir=exp/tri4b_ali_train_si284_sp', '--lang=data/lang',  '--reporting.email=', '--dir=exp/nnet3/tdnn1a_sp']
                2021-06-23 21:35:31,726  [steps/nnet3/train_dnn.py:178 - train - INFO ] Arguments for the experiment
                {'ali_dir':  'exp/tri4b_ali_train_si284_sp',
                'backstitch_training_interval': 1,
                'backstitch_training_scale': 0.0,
                'cleanup': True,
                'cmvn_opts': '--norm-means=false  --norm-vars=false',
                'combine_sum_to_one_penalty': 0.0,
                'command': 'run.pl --mem 32G',
                'compute_per_dim_accuracy': False,
                'dir': 'exp/nnet3/tdnn1a_sp',
                'do_final_combination': True,
                'dropout_schedule': None,
                'egs_command': None,
                'egs_dir': None,
                'egs_opts': None,
                'egs_stage': 0,
                'email': None,
                'exit_stage': None,
                'feat_dir': 'data/train_si284_sp_hires',
                'final_effective_lrate': 0.00015,
                'frames_per_eg': 8,
                'initial_effective_lrate': 0.0015,
                'input_model': None,
                'lang': 'data/lang',
                'max_lda_jobs': 10,
                'max_models_combine': 20,
                'max_objective_evaluations': 30,
                'max_param_change': 2.0,
                'minibatch_size': '256,128',
                'momentum': 0.0,
                'num_epochs': 3.0,
                'num_jobs_compute_prior': 10,
                'num_jobs_final': 2,
                'num_jobs_initial': 2,
                'num_jobs_step': 1,
                'online_ivector_dir':  'exp/nnet3/ivectors_train_si284_sp_hires',
                'preserve_model_interval': 100,
                'presoftmax_prior_scale_power': -0.25,
                'prior_subset_size': 20000,
                'proportional_shrink': 0.0,
                'rand_prune': 4.0,
                'remove_egs': True,
                'reporting_interval': 0.1,
                'samples_per_iter': 400000,
                'shuffle_buffer_size': 5000,
                'srand': 0,
                'stage': -10,
                'train_opts': [],
                'use_gpu': 'yes'}
                2021-06-23 21:35:32,312  [steps/nnet3/train_dnn.py:228 - train - INFO ] Initializing a basic network for  estimating preconditioning matrix
                2021-06-23 21:35:32,415  [steps/nnet3/train_dnn.py:238 - train - INFO ] Generating egs
                steps/nnet3/get_egs.sh --cmd run.pl --mem  32G --cmvn-opts --norm-means=false --norm-vars=false --online-ivector-dir  exp/nnet3/ivectors_train_si284_sp_hires --left-context 13 --right-context 7  --left-context-initial -1 --right-context-final -1 --stage 0 --samples-per-iter  400000 --frames-per-eg 8 --srand 0 data/train_si284_sp_hires  exp/tri4b_ali_train_si284_sp exp/nnet3/tdnn1a_sp/egs
                File data/train_si284_sp_hires/utt2uniq  exists, so augmenting valid_uttlist to
                include all perturbed versions of the  same 'real' utterances.
                steps/nnet3/get_egs.sh: creating  egs.  To ensure they are not deleted  later you can do:  touch  exp/nnet3/tdnn1a_sp/egs/.nodelete
                steps/nnet3/get_egs.sh: feature type is  raw, with 'apply-cmvn'
                feat-to-dim  scp:exp/nnet3/ivectors_train_si284_sp_hires/ivector_online.scp - 
                steps/nnet3/get_egs.sh: working out  number of frames of training data
                steps/nnet3/get_egs.sh: working out  feature dim
                steps/nnet3/get_egs.sh: creating 3  archives, each with 300234 egs, with
                steps/nnet3/get_egs.sh:   8 labels per example, and (left,right)  context = (13,7)
                steps/nnet3/get_egs.sh: copying data  alignments
                copy-int-vector ark:-  ark,scp:exp/nnet3/tdnn1a_sp/egs/ali.ark,exp/nnet3/tdnn1a_sp/egs/ali.scp 
                LOG  (copy-int-vector[5.5.839~8-0c6a]:main():copy-int-vector.cc:83) Copied 18906  vectors of int32.
                steps/nnet3/get_egs.sh: Getting  validation and training subset examples.
                steps/nnet3/get_egs.sh: ... extracting  validation and training-subset alignments.
                ... Getting subsets of validation  examples for diagnostics and combination.
                steps/nnet3/get_egs.sh: Generating  training examples on disk
                steps/nnet3/get_egs.sh: recombining and  shuffling order of archives on disk
                steps/nnet3/get_egs.sh: removing  temporary archives
                steps/nnet3/get_egs.sh: removing  temporary alignments
                steps/nnet3/get_egs.sh: Finished  preparing training examples
                2021-06-23 21:36:12,873 [steps/nnet3/train_dnn.py:276  - train - INFO ] Computing the preconditioning matrix for input features
                2021-06-23 21:36:23,354  [steps/nnet3/train_dnn.py:287 - train - INFO ] Computing initial vector for  FixedScaleComponent before softmax, using priors^-0.25 and rescaling to average  1
                2021-06-23 21:36:23,660  [steps/nnet3/train_dnn.py:294 - train - INFO ] Preparing the initial acoustic  model.
                2021-06-23 21:36:24,208  [steps/nnet3/train_dnn.py:319 - train - INFO ] Training will run for 3.0 epochs  = 36 iterations
                2021-06-23 21:36:24,209  [steps/nnet3/train_dnn.py:355 - train - INFO ] Iter: 0/35   Jobs: 2    Epoch: 0.00/3.0 (0.0% complete)    lr: 0.003000   
                2021-06-23 21:37:41,807  [steps/nnet3/train_dnn.py:355 - train - INFO ] Iter: 1/35   Jobs: 2    Epoch: 0.08/3.0 (2.8% complete)   lr: 0.002814   
                2021-06-23 21:38:29,577  [steps/nnet3/train_dnn.py:355 - train - INFO ] Iter: 2/35   Jobs: 2    Epoch: 0.17/3.0 (5.6% complete)    lr: 0.002640   
                2021-06-23 21:39:17,188  [steps/nnet3/train_dnn.py:355 - train - INFO ] Iter: 3/35   Jobs: 2    Epoch: 0.25/3.0 (8.3% complete)    lr: 0.002476   
                2021-06-23 21:40:04,595  [steps/nnet3/train_dnn.py:355 - train - INFO ] Iter: 4/35   Jobs: 2    Epoch: 0.33/3.0 (11.1% complete)    lr: 0.002323   
                run.pl: job failed, log is in  exp/nnet3/tdnn1a_sp/log/train.4.1.log
                2021-06-23 21:40:06,225  [steps/libs/common.py:236 - background_command_waiter - ERROR ] Command exited  with status 1: run.pl --mem 32G --gpu 1  exp/nnet3/tdnn1a_sp/log/train.4.1.log                     nnet3-train --use-gpu=yes  --read-cache=exp/nnet3/tdnn1a_sp/cache.4  --write-cache=exp/nnet3/tdnn1a_sp/cache.5                       --print-interval=10                     --momentum=0.0                      --max-param-change=2.0                      --backstitch-training-scale=0.0                     --l2-regularize-factor=0.5                      --backstitch-training-interval=1                     --srand=4                       "nnet3-copy  --learning-rate=0.00232279104804 --scale=1.0 exp/nnet3/tdnn1a_sp/4.mdl -  |" "ark,bg:nnet3-copy-egs --frame=5              ark:exp/nnet3/tdnn1a_sp/egs/egs.3.ark  ark:- |             nnet3-shuffle-egs  --buffer-size=5000             --srand=4  ark:- ark:- |               nnet3-merge-egs --minibatch-size=256,128 ark:- ark:- |"                      exp/nnet3/tdnn1a_sp/5.1.raw